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The accumulation of ©in the earth’s atmosphere began /0532
approximately two billion years ago, after the molecular oxygen 0 0 re-oxidant
that was liberated from photosynthetic bacteria had oxidized most — \/ X0 Y 20 Hz0
of the iron(ll) resources in the oceans to ferric minetaddthough
a powerful oxidant had become available, the low reactivity of O -0504 0505 X X X X
to typical organic fuel molecules was a major obstacle in evolution. diol \ o/\o X Yo z Hz0,

oxygen-transfer mediators  green terminal oxidant

Nature circumvented the unfavorable kinetics of direct oxidations
by designing the aerobic respiratory chain, which proceeds in the
inner mitochondrial membrane of eukariotic cellEhe feasibility

of each electron-transfer step in respiration depends on the
difference of the electron-transfer potential, E, for the corresponding
pairs of redox couples Ox/RedElectron-transfer potentials are
typically measured relative to the™H/,H, reference couple and
are connected to the reaction free enefdy; of reaction 1.
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Figure 1. “Green” Sharpless dihydroxylation.
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Chemists learned from nature to improve the efficiency of MeC(OJOH

catalytic oxidation processés?rotocols using the green terminal
oxidant hydrogen peroxide are of particular interest because water

is the only waste product. The Belteand Bakvall® laboratories moao?ﬁ;:ﬂ!

recently reported environmentally benign oxygen-transfer chains o orate | hiorate

for the Sharpless dihydroxylatié,where the oxidation of the five- g::,:::: N-oxide /

membered metallacycle of osmium(VI) (dioxoosma-2,5-dioxolane) oko. | diox0- ane

to the osmium(VIIl) species is a crucial step (Figure 1). Whereas Me,SO / Me,S

experimental electron-transfer potentials from textbééksflect xirans | ehylene

the electron flow in the redox reactions of respiration (see mﬁ ve.50 srection of
Supporting Information), a quantitative rationalization of the design acetaldehyde / oxygen ransfer l
of oxygen-transfer chains has not been achieved. In this work, we :::f;’ons,m,z

define and predict the thermodynamic oxygen-transfer potential
(TOP, in kcal/mol) for a couple XO/X as the reaction free energy
AG, of reaction 2.

X + H,0,— XO + H,0 )

The oxidation of X is thermodynamically more favorable than
that of Z (or X may be oxidized by ZO) if TOP (XO/Xy3 TOP
(20O/z). Figure 2 displays TOP values for a variety of oxidants
and substrates calculated using density functional theory (DFT) at
the B3LYP level The results provide a unified view of oxygen-
transfer pathways, for example, in osmium-catalyzed olefin di-
hydroxylation methods developed in the last nine decadeshe
oxidation of dioxoosma-2,5-dioxolane to the trioxo species requires
an oxidant with a higher TOP than that of trioxo-/dioxoosma-2,5-
dioxolane (TOP= —36)2 Perchlorate (TOR= —24) was used in
Hofmann’s pioneering wofR and N-methylmorpholineN-oxide
(TOP = —17 for MesNO/NMej) is the terminal oxidant in the
Upjohn proces& For Bakvall's recent method of olefin
dihydroxylation with HO, in the presence of methyltrioxo-
rhenium(VII) (MTO)° the chiral tertiary amine (DHQBRPHAL,

Figure 2.
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Thermodynamic oxygen-transfer potentials (TOP).

oxygen-transfer cascade from the rhenium peroxide (OB via
the amine (TOP= —17 for MeNO/NMe;) to the osmium
metallacycle (TOR= —36; see orange bars in Figure 2).

Since the TOP values provide only thermodynamic information,
one may define thkineticoxygen-transfer potential (KOP, in kcal/
mol) of an XO/X couple as the activation free ener§s, of
reaction 313 and then predict the activation free eneryg, of
reaction 4 from KOPs using Marcus thedfyHowever, this
approach fails entirely in case of 'Blavall’s protocol (see Sup-
porting Information).

3)
(4)

A rigorous investigation of the transition states (TS) for mutual
oxygen-transfer events among tertiary amines, osma-2,5-dioxolanes,
and rhenium peroxides at the B3LYP level predicts aquamethyl-
oxodiperoxo rhenium(VIl) (MTOZ) to oxidize trimethylamine with

and osmium tetraoxide, the TOPs in Figure 2 demonstrate the likely an activation free energ&G, of 17 kcal/mol. From first sight, the
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